

MAX count Advanced is a Powerful three preset counter with a presettable Batch Counter and a Background Totalizer. MAX features guided programming using English prompts for easy setup and operation. MAX is clearly the best choice for industrial counting applications.

FEATURES

- Simultaneous Counter, Totalizer, and Batching
- "ON THE FLY" Preset Programming
- A-B, A+B and Quadrature operation
- Three Preset, Six Decade Main Counter
- Six Decade Start count Preset
- Six Decade Single Preset Batch Counter
- Six Decade Background Totalizer
- 4 Wire / 2 Wire RS-485 Provides LOCAL and REMOTE process Control Capability Modbus RTU protocol
- COUNTER RESET, STOP / HOLD inputs
- BATCH/TOTAL RESET input
- OUTPUT CONTROL input
- Non-Volatile Memory (FRAM) for Counters \& Programmed parameters
- Built In Self- Diagnostics
- Eight Alpha Numeric, 14 Segments LED display

KEY SPECIFICATIONS

- DC to 40 kHz Operation
- Programmable Input Logic (x1,x2, or x4)
- Five Decade Calibrator
- Three Relay and Three Transistor Outputs
- 10Amp Relay Contact Rating
- Programmable Relay Hold Time xx.xx sec
- +12VDC @ 175mA Transducer Supply
- 85-265 VAC Operation (12VDC Optional)

INDEX TO CONTENTS

Overview	p. 2,3
Specification	p. 4
Front Panel Controls	p. 5
Programming	p. $6-11$
Applications	p. 12-13
Installation	p. $14-16$
Serial Communication Overview	p. 17
Serial Interface Protocol	p. 18-25
Ordering Information	p. 26

p. 2,3
p.
p. 6-11
p. 12-13
p. 14-16
p. 18-25
p. 26

Input Power:	85-265 VAC, $50-60 \mathrm{~Hz}, 20$ VA 12 VDC @ 0.5 A. Optional
Accessory Supply:	12 VDC @ 175 mA .
Main Counter:	
Range:	6 Decades
Presets:	3 Individual with 6 decade range
Operation:	A-B, A+B, Quadrature
Reset Input:	External and front panel
Count Rate:	40 kHz internal (40 kHz external input frequency with x 1 logic) (20 kHz external input frequency with x 2 logic) (10 kHz external input frequency with x 4 logic)
Calibrator:	
Range:	5 Decade, 0.0001 to 9.9999
Operation:	Calibrates Main Counter and totalizer
Totalizer:	
Range:	6 Decade
Operation:	Totalizes calibrated input counts
Batch Counter:	
Range:	6 Decade
Presets:	1 with 6 Decade range
Operation:	Count UP by detecting Auto
Output:	Programmable assignment
Signal A and B Inputs:	
Input Frequency:	DC to 40 kHz , (40 kHz external input frequency with x 1 logic) (20 kHz external input frequency with $\times 2$ logic) (10 kHz external input frequency with x 4 logic)
Input Type:	Single ended, Current Source
Input Logic:	x1,x2,x4
Input High Level:	3.25 VDC min.
Input Low Level:	1.75 VDC max.
Input Impedance:	$1.0 \mathrm{k} \Omega$ to common
Input current:	3.25 mA . steady state
Input Response:	$10 \mu \mathrm{~s}$. min high and low time
Control Inputs:	
Input Frequency:	DC to 20 Hz Max. each input. RESET input 100 Hz response
Input Type:	Single ended, current sinking
Input Logic:	Both edge \& Level sensitive as defined by input use
Input High Level:	10VDC min. to 20 VDC max.
Input Low Level:	0 VDC min. to 2 VDC max.
Input Impedance:	$4.7 \mathrm{k} \Omega$ pullup to +12 Vdc
Input Current:	2.5 mA . Steady state
Input Response:	25 ms . make and break time

Display:
Decades:
Annunciators:
Decimal Point:

Keyboard:
Program Security:
Control Outputs: Type:

Serial Interface:
Type:
Baud Rate:
Data:
Format:
Protocol:
I.D. Number:

Diagnostics:

Test 0:	Keyboard Test
Test 1:	FRAM Test
Test 2:	Input Test
Test 3:	Output Test
Test 4:	Display Test
Test 5:	Flash Memory Test
Test 6:	Date Code Test
Test 7:	Serial I/O Test
Test 8:	Return to Factory Programming

Mechanical:
Enclosure
Cutout
Panel Thickness
Panel Depth
Weight
Environmental:
Operating Temp: Storage Temp:
Ambient Humidity:

Eight Alpha Numeric, 0.4" red LED
Three Annunciators RUN, SET, PGM
User programmable
Range: x.xxxxx to xxxxxx
Sealed tactile feel, 6 positions
Program LOCK for lines 3-39

3 Solid State,
100mA sink max., 24 VDC max.
Optional: 3 SPDT Relays, rated 10Amp 30VDC/270VAC Resistive

RS-485 compatible (4 or 2 wire options with modbus support)
Selectable; 1200, 2400, 4800 or 9600 Binary
1 START Bit, 8 Bit data , 1 STOP Bit
ModBus RTU
Programmable 1 to 32: Allows multidrop systems.

Plastic Moulded
2.0" High x 4.0 Wide x 5.56 "Deep
1.77 " ${ }^{[45 m m}$] 3.62 " [92 mm]
$1 / 16^{\prime \prime}$ to $1 / 4^{\prime \prime}$
$5.68^{\prime \prime}$ Minimum
0.68 lb [308 gm]
$-15^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
90% and noncondensing

Controller Error Codes

1. Low AC Line Voltage (Displays LOW AC)
2. Input Frequency Too fast (Displays FREQ MAX)

FRAM Error Codes

1. Run Mode parameters corrupted (FRUNFAIL).
2. Program Mode parameters corrupted (FPGMFAIL).

Note: Power cycle to clear the FRAM error

- ANNUNCIATORS

- RUN constantly illuminated in the RUN mode
- SET constantly illuminated in the SETUP mode
- PGM constantly illuminated in the PROGRAM mode
 PROGRAM mode
- Decrement the number in edit mode (Highlighted digit)
UP KEY
- Sequences Up through menu options of RUN or SETUP menu
- Reset Main Counter, Batch Counter and Totalizer in the RUN Mode (Lines S,1,2).
- Sequences Up through menu options of programming menu
- Increment the number in edit mode (Highlighted digit)

RIGHT KEY

- Sequences to the right in individual Programming menus or enters edit mode by highlighting the left most digit and sequences highlighting to the right digit in Program menu and in SETUP mode
- Affects only the currently displayed line.
- Clears display in the SETUP and PROGRAM modes

RUN/PGM

- Used to switch between the RUN and PROGRAM modes Acts as an alternate action switch.

KEY

- Used to enter SETUP mode from the RUN mode.
- Press again to exit SETUP \& go to RUN mode.
- Allows the unit to be programmed "on the fly". Used to direct address lines 3-39 while in PROGRAM mode, press KEY, line number, Key

RUN MODE:

LINE FUNCTION
S COUNT VALUE
1 BATCH COUNT VALUE

2 TOTALCOUNT VALUE

SETUP MODE:
3 STARTCOUNT

4 PRESET 1

5 PRESET 2

6 PRESET 3
$7 \quad$ BATCH PRESET

DESCRIPTION

Indicates current Count
Indicates current Batch Count. Conditional: Batch Counter (line 12) must be 'ON'.

Indicates current Totalizer Count. Conditional: Totalizer (line 13) must be 'ON').

SETUP MODE (inhibited by the PRESET LOCK being 'ON')

Numeric Value for "set to a number". Conditional: Direction (line 10) must be 'Down'.

Numeric value for Preset 1. Conditional: P1 (line 23) must have assignment.
Numeric value for Preset 2. Conditional: P2 (line 24) must have assignment.

Numeric value for Preset 3. Conditional: P2 (line 25) must have assignment.
Numeric value for Batch Preset. Conditional: Batch Counter (line 12) must be 'ON' and Batch Preset (line 26) must have assignment.

PROGRAM MODE

3 STARTCOUNT
4 PRESET 1
5 PRESET 2
6 PRESET 3
7 BATCH PRESET
8 CORRECTION CONSTANT

Numeric value for "Set to a number" (for Count Down mode only).
Numeric value of Preset 1.
Numeric value of Preset 2.
Numeric value of Preset 3.
Numeric Value for Batch Preset.
Numeric constant for inputs A \& B. See page-12.

RUN MODE

Note: CB, CT will display only if line $12 \& 13$ "ON" correspondingly.
SETUP MODE

PROGRAM MODE

${ }_{5}$ P. 200000					
6 ¢ 3.00000					
7 PG. 00000					
8 C[. 100000					

KEY Asks for a line number (LINE 0)
(enables to enter a line number, then press KEY to jump to the desired location)
INPUTMODE
COUNT DIRECTION
DECIMALPOINT
BATCH COUNTER
TOTALIZER
FRONT PANEL RESET
PRESETLOCK
COUNTERRETENTION
RESETTYPE
STOP / HOLD MODE
BATCH /TOTAL RESETMODE
OUTPUT 1
OUTPUT2
OUTPUT3
P1 ASSIGNMENT
P2 ASSIGNMENT
P3 ASSIGNMENT
BATCH PRESET ASGMNT
RESET INPUT ASGMNT
OUTPUT CONTROL ASGMNT
BAUD RATE
IDNUMBER

Selects $A-B, A+B X 1$ for open collector or contact inputs;
Selects A-B, A+B X2 or Quadrature X2, X4 for open collector inputs
Select "reset to zero" for UP or "set to number" for DOWN
Decimal point position for Count, Total Count, and Presets.
Select ON or OFF
Select ON or OFF
Select ON or OFF
Select ON or OFF. Affects entry into SETUP mode
Select ON or OFF (Saves count value during power outages).
Select open collector or contact closure input types
Select STOP count or Display HOLD function via external input.
Select BATCH reset or TOTALIZER reset functions via external input
Select latched or pulsed operation for output 1
Select latched or pulsed operation for output 2
Select latched or pulsed operation for output 3
Assign output operations to Preset 1
Assign output operations to Preset 2
Assign output operations to Preset 3
Assign output operations to Batch Preset.
Assign output operations to Reset Input
Assign output operations to Output control input.
Selects OFF,1200, 2400, 4800 or 9600 baud.
Serial ID Number. Programs unit serial ID. (01-32)

The MAX Count Advanced controller provides a group of diagnostics to self test the controller and field wiring as well as helps the user diagnose machinery malfunctions. Nine diagnostic tests are provided and may be run only while the unit is in the PROGRAM mode. These tests should be done "offline" (user's process not being controlled). The tests are outlined below along with the keyboard commands to control them.

LINE	DIAGNOSTIC	DESCRIPTION
31	TEST 0	Keyboard Test: Display echoes on each key press.
32	TEST 1	FRAM Memory Test.
33	TEST 2	Input Tests: Test for "Closures" on Inputs.
34	TEST 3	Output Test: Press key to select the Relays 1-3 using $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$, press Key to turn ON. Press CLR to Turn 'OFF'.
35	TEST 4	Display Test: Illuminates all segments.
36	TEST 5	Flash Memory test: Checksum comparison for program memory.
37	TEST 6	Version code Test: Displays date code version of firmware.
38	TEST 7	Serial Test: Provides loop-back test of the serial transmitter and receiver (will indicate 'FAIL' if the loop back connectors are not made).
39	TEST 8	Returns controller to the factory programmed state.

Test T0: Display shows: TO. RDY
Press RIGHT key (in line 31)
Then it will display T0 RUN
The display with corresponding key press will be as shown below:

Key	Display
UP KEY	
KEY	DOWN KEY
RST/CLR	RIGHT KEY
RUN/PGM	Exits from the menu shows TO RDY
	RESET KEY
	RUNKEY

Test T1: Display shows: T1. RDY
Press RIGHT key (in line 32)
Then it will display PASS/FAIL indicating the FRAM test. Pass will be displayed if FRAM is ok. If Fail displayed means there is a problem with FRAM call Eagle Signal. Press KEY key to exit from the menu and the display show T1. RDY

Test T2: Display shows: T2. RDY
Press RIGHT key (in line 33)
Then it will display $\mathbf{I N}$ and the inputs connected to it (A and B) and it will display the following for the control inputs when externally pulled low.

Control input Display
STOP/HOLD 1
BATCH/TOTAL reset 2
Counter reset 3
Output control 4
Press KEY key to exit from the menu and the display show T2. RDY

Test T3:	Display shows: T3. RDY Press RIGHT key (in line 34) Then the display shows OUTTST 1 and by scrolling up and down OUTTST 2, OUTTST 3 are displayed, press RIGHT key the corresponding Solid State / Relay output ON. Press RST/CLR to make Solid State / Relays output OFF. Press KEY key to exit from the menu and the display show T3. RDY
Test T4:	Display shows: T4. RDY Press RIGHT key (in line 35) Then all the LED's and annunciators glows indicating that the test is passed. Press KEY key to exit from the menu and the display show T4. RDY
Test T5:	Display shows: T5. RDY Press RIGHT key (in line 36) Shows FAIL/PASS indicating Flash test whether it is failed or passed. Press KEY key to exit from the menu and the display show T5. RDY
Test T6:	Display shows: T6. RDY Press RIGHT key (in line 37) It displays the version of the current module. (VER 1) Press KEY key to exit from the menu and the display show T6. RDY
Test T7:	Display shows: T7. RDY Press RIGHT key (in line 38) Shows FAIL/PASS indicating Serial communication is OK (if RXD+ shorted to TXD+ and RXD- shorted to TXD-) or not. Displays PASS if serial communication is OK Displays FAIL if serial communication is not OK. Press KEY key to exit from the menu and the display show T7. RDY
Test T8:	Display shows: T8. RDY Press RIGHT key (in line 39) Display shows T8 RUN. It loads all the factory programmed values. Press KEY key to exit from the menu and the display show T8. RDY

EDITING PARAMETERS:

Enter the program mode by following the Note mentioned below. Reach a particular line which is required to change by pressing DOWN key then press RIGHT Key, the first digit Highlights, which indicate edit mode. Edit value by using UP and DOWN keys, then press RIGHT key which will highlight the next digit. After entering the value, to confirm or exit from edit mode, press KEY key.

NOTE 1:

To enter program mode from run mode, Press RUN/PGM key, Then the display shows LOC 0000, with the first digit highlighted. Then edit the value by using UP and DOWN key for the first digit as 2, then press RIGHT key which will take the highlighting to second digit. Enter value as 6 , similarly enter $3^{\text {rd }}$ and $4^{\text {th }}$ digits as 6 . After entering the value for LOC as 2666, Press KEY key, it will enter to program mode.
If the LOC doesn't match with 2666 then it will return to RUN Mode.

NOTE 2:

While entering the value for a parameter, if the highlighting reaches the right most digit, and upon pressing RIGHT key, the highlighting goes back to the left most digit.

INPUT MODE PROGRAMMING

The input mode (line 9) is provided to select all legal combinations of input logic, input mode and sensor type. This allows the user to effectively increase the resolution of the count input transducer. (You cannot program X4 logic with unidirectional input device or X1 logic with Quadrature input device). X2 logic detects the leading and trailing edges of each pulse; X4 logic detects leading and trailing edges of both signals in Quadrature inputs.

CORRECTION CONSTANT PROGRAMMING:

The Correction constant (Line 8) has a user programmable range of five decades. This feature allows the user to factor the incoming count into useful engineering units (inches, cm, mm, etc.). The resolution of the count transducer and input logic should be chosen to take advantage of the best instantaneous accuracy of the calibrator. The best instantaneous accuracy is obtained with a correction constant setting not exceeding 1.0000. The general form of the equation for the correction constant is given below.

Displayed Value in Engineering units

CC =
(Display Resolution) x Input pulses x Input logic (Where input Logics is $\mathrm{X} 1, \mathrm{X} 2$ or X 4)

BATCH COUNTER and BACKGROUND TOTALIZER OPERATION:

The Batch counter increments each time an Auto Reset assignment is processed by the controller if the Batch Counter is selected 'ON' (Line 12 of the Program table). The Batch Counter may be reset via the front panel by scrolling to the Batch Counter display line, then pressing the RST/CLR key. The Batch counter may be reset externally by selecting the BATCH/TOTAL input in the Batch Reset(line 19). The Totalizer counts in parallel with the main counter when selected 'ON' (line 13). The Totalizer may be reset via the front panel by scrolling the Totalizer display line, then pressing the RST/CLR key. The Totalizer may be reset externally by selecting the BATCH/TOTAL input as the Totalizer Reset (Line 19).

SETUP MODE OPERATION:

The Count and the Batch presets may be dynamically changed while in the RUN mode of operation by entering the SETUP mode. The Counter continues to operate without loss of count while the operator is in the SETUP mode. The SETUP mode is entered by pressing the KEY key. Entering the SETUP mode is only allowed if the Preset lock (Line 15) is OFF. The annunciator 'SET' will glow signaling entry into the SETUP mode. The control continues to operate, keeping track of the count and comparing presets.

While in the SETUP mode the CLR/RST, UP and DOWN keys are active allowing the data to be changed as required. You may change any or all the SETUP mode lines. Changes to the operational presets (those used in the RUN mode) are made upon exiting SETUP mode. Any changes that are made in the SETUP mode are saved at any appropriate program lines when the SETUP mode is exited. Exit the SETUP mode by pressing KEY key

To display the Start Count (SC) in SET mode, the direction should be made DOWN (DIR DN) in Line 10, and to display the presets P1, P2, P3 and PB the corresponding assignments should be made in Program Mode.

WARNING: Use caution when editing presets in the SETUP mode. Preset comparisons will be made with the edited presets upon exiting the SETUP mode and entering RUN mode. Preset comparisons are made as follow: When the Preset changes from > the count value to \leq the Count value or when the Preset changes form <the count value to \geq the Count Value. External machine logic circuitry should be designed to handle this.

STOP/HOLD CONTROL INPUT:

The STOP/HOLD input is programmable as either a STOP Count or as Display HOLD function (Line 18). When selected as a STOP Count function, a contact closure causes the input counts to the Main and Totalizing Counters to be inhibited (counters will not count). When selected as a Display HOLD function, a contact closure causes the front panel display to be "frozen", but lets the controller continue to count. The Display HOLD function does not affect data being transmitted via the serial interface.

APPLICATIONS

Conveyor Loading

NOTES:

1. Installations must be made in accordance with EAGLE SIGNAL manual 845-130.
2. For application which require multiple products operation in parallel, see 845-130.
3. When replacing older products, consult 845-130 for information regarding circuitry changes.

A. PANEL MOUNTING:

Make Panel Cutout. Affix adhesive gasket (if required) to panel. Remove the Unit holder and slide unit through the cutout. Slide back the Unit holder.

B. INPUT POWER

AC POWER

Connect AC power to the unit Connect terminal BLD GND to BUILDING GROUND!

DC POWER

Connect +12 VDC to terminal L1 and 12 Volt ground to terminal N/L2. Connect terminal BLD GND to BUILDING GROUND!

C. CONTROL INPUTS

STOP/HOLD (Term INP1)

Level sensitive 20 Hz Response $4.7 \mathrm{k} \Omega$ to +12
VDC (Shows '1' during input diagnostic test).

OUTPUT CONTROL (Term INP2)
Edge sensitive 20 Hz Response $4.7 \mathrm{k} \Omega$ to + 12 VDC (Shows ' 2 ' during input diagnostic test).

COUNTER RESET (Term INP3)

Edge sensitive 20 Hz Response $4.7 \mathrm{k} \Omega$ to +12 VDC (Shows ' 3 ' during input diagnostic test).

BATCH / TOTAL RESET (Term INP4)

Selected on Line 19 Edge Sensitive 20 Hz Response $4.7 \mathrm{k} \Omega$ to +12 VDC (Shows '4' during input diagnostic test).

D. CONTROL OUTPUTS

E. COUNTER INPUTS

 BIDIRECTIONAL ENCODERS(Type 42, 62 Rotopulser)
SIG A leads SIG B by 90 deg $1.0 \mathrm{k} \Omega$ to COM

UNIDIRECTIONAL ENCODERS
(Type 53 Pickup, 76 Roto)
SIG A Adds; SIG B Subtracts $1.0 \mathrm{k} \Omega$ to COM

OPEN COLLECTOR (NPN)

SIG A Adds; SIG B Subtracts 1.0 k Ω To COM
Customer supplied Pullup Resistor (typ)
$2.2 \mathrm{k} \Omega$ max. to $+12 \mathrm{~V} ; 470 \Omega$ max to +5 V

CONTACT CLOSURE / SWITCH
SIG A Adds; SIG B Subtracts $1.0 \mathrm{k} \Omega$ To COM

F. RELAY OUTPUTS

GENERAL WIRING RULES:

1. Use only Shielded cables for all signal wiring.
2. Separeat signal and load switching wiring.
3. Supply AC power through a separately fused circuit
4. Terminal connector plug accepts $20-28$ AWG wires

Replacement Arrangement: (To Mount MAX Count Advanced in 1/4 DIN panel cutout)

Follow these steps to mount MAX Count Advanced in place of existing Max Sr. Products, Panel cutout Size of 5.43 " $\times 2.68^{\prime \prime}$.
a) Affix adhesive gasket (if required) to panel.
b) Insert Large Bezel from front size.
c) Match the locking plates to the mounting holes of the bezel from inside and drive the screws.
d) Remove the Unit holder of the MAX Count Advanced and slide unit through Large Bezel from front and slide back the unit holder.

Rear View

Front View

OVERVIEW

The MAX Count Advanced is equipped with an RS-485 Serial interface for remote data collection, programming and networking applications. Front panel keyboard and some external control inputs are supported. Additionally, facilities are provided for individual (local) and group (global) control of single and multiple unit configurations respectively in a bus oriented system. Knowledge of serial communications is required by the user who wishes to use the remote capabilities or to integrate the control into a larger system.

Two applications will be discussed. The first consists of a single MAX Count Advanced and a display terminal. It explains the use of the serial commands that mimic the keyboard operation and some control inputs. These are the LOCAL commands. Next, an application of multiple units under the control of a host computer will be discussed. The GLOBAL commands will be discussed in this section.

SERIAL CONNECTIONS

SINGLE UNIT WIRING

MULTIPLE UNIT WIRING

TERMINATION

The RS-485 receivers require the termination to minimize the effects of noise while the bus is not being driven. The MAX and PM61 products incorporate the terminations shown on the right internally. When connection is made to RS-485 device other than a MAX or PM61, the receiver should be terminated as shown.

CABLE SELECTION

The MAX serial interface uses a simple interconnect scheme and low cost wiring making it superior to parallel data transfer schemes. Through three (3) wire pairs, remote operation at distances up to 5,000 feet can be implemented. The following general guidelines should be observed.

1. Use \#24 AWG twisted pair, overall shielded cable.
2. Use a "daisy chained" connection scheme for bus systems.

PROTOCOL : Modbus RTU

Modbus is the one of the industrial standard protocol. There are two types of Modbus implementation, one is 'ASCII' and other is 'RTU', since RTU (Remote Terminal Unit) is the more popular, MAX Count Advanced has supported 'Modbus RTU' Protocol.
Modbus RTU protocol is supported by almost all industrial standard automation products like PLCs, Motor Drives, DCS, and SCADA etc.
Modbus is a Message based master-slave type protocol, where as there is a one master on a multi-drop communication bus and several slaves connected which are addressed as per their unique slave id. The master sends a query to slaves to read the data from slave as well as writes data on the slave.

Following is the serial port specifications:-

Baud Rate:- Programmable as OFF (OFF= no communication) or 1200, 2400, 4800, 9600
Data format:- 8 bit , no parity, 1 start bit, 1 stop bit
Supported Modbus Queries: MAX Count Advanced supports the three types of modbus commands,

1. Command 03 (Read Holding Register)
2. Command 16 (WRITE Holding Registers)
3. Command 04 (Read Input Register)

Description of modbus commands:-

Command 03 (Read Holding Register)

Read Multiple Holding Registers.
This command will allow the master to read Programmed Parameters like presets settings etc. Using this command maximum 2 numbers of 16 bit integers can be read together in single query. That means, 3 or more holding register read can not be done in a single query. Multiple queries can be sent for different address to read the data from instrument. Since most of the variables
3. If a "multidrop" system is used, keep the drop length at 10% of the main line.
4. Tie the cable shield to BUILDING GROUD at the MAX end of the cable.
5. Crimp both the wires to a common lug for Multiple unit wiring.

RECOMMENDED CABLE TYPES:
Belden \#9503
Alpha \#5493
are 32 bit long integers, the modbus master need to read two concurrent integer words and combine them to form a 32 bit long integer for processing.

Following is an example of how to do it.
Assume that the value of the Start Counts SC is 123456. The Hex value will be 1E240H. The Holding Register address of SC is (40000:40001) and hence, address 40000 will contain 01h (Most Significant word) and address 40001 will contain E240h value (Least significant word).

Note:

Ensure to switch OFF \& ON the unit after editing the programming parameters through the MODBUS commands.

1 PLC: Programmable Logic controller,
2. DCS Distributed Control Systems
3. SCADA: Supervisory controls \& Data Acquisition.

Command 03...
Format of command as per above example where SC is having 123456 value
Following will be a query from master followed by the response from the slave.

Byte No	Hex Value	Description	Remarks
1	01	Slave ID	Should be matching with Slave ID set on the instrument
2	03	Command to read holding reg.	Address of the register to read
3	00	Starting Address Hi byte	$0000=$ SC Hi, 0001 = SC Lo etc
4	00	Starting Address Lo byte	
5	00	Number of Registers Hi byte	Number of registers to read in single command. Can not be greater than 0002 for MAX products.
6	02	Number of Registers Lo byte	
7	CRC Lo	CRC Lo byte	16 bit CRC, Data validation code
8	CRC Hi	CRC Hi byte	

Following will be the Response from the instrument. Multiple slave units may be connected to Modbus RS485 bus, the instrument with Slave ID=1 will respond to this query.

Byte No	Hex Value	Description	Remarks
1	01	Slave ID	Should be matching with Slave ID set on the instrument
2	03	Command to read holding reg.	
3	04	Number of bytes of data being sent	
4	00	Hi byte of requested register (40000 in this case)	
5	01	Lo byte of requested register (40000 in this case)	Data of the requested register
6	E2	Hi byte of requested register (40001 in this case)	
7	40	Lo byte of requested register (40001 in this case)	
8	CRCLo	CRC Lo byte	16 bit CRC, Data validation code
9	CRC Hi	CRC Hi byte	

SERIAL INTERFACE PROTOCOL ...

Command 16: (WRITE Holding Registers)

This Command is used to write/Edit programmable Parameters. Following example illustrates how to write P1 the values 345678 .
$P 1$ setting value $345678=5464 E$ hex.
Following is the Query through which SC and P1 values will be edited

Byte No	Hex Value	Description	Remarks
1	01	Slave ID	Should be matching with Slave ID set on the instrument
2	16	Command to Write holding register	
3	00	Hi byte of requested register (40000 in this case)	For 2 number of registers, 4 bytes of data. will be sent
4	00	Lo byte of requested register (40000 in this case)	
5	00	Hi byte of requested number of registers.	Number of registers to update (Max 2)
6	02	Lo byte of requested number of registers.	
7	00	Hi byte of Data integer	Data for register 40000
8	05	Lo byte of Data integer	
9	46	Hi byte of Data integer	Data for register 40001
10	4E	Lo byte of Data integer	
11	CRCLo	CRC Lo byte	16 bit CRC, Data validation code
12	CRCHi	CRC Hi byte	

Following will be the Response from the instrument. Multiple slave units may be connected to Modbus RS485 bus, the instrument with Slave ID=1 will respond to this query as follows.

Byte No	Hex Value	Description	Remarks
1	01	Slave ID	Should be matching with Slave ID set on the instrument
2	16	Command to Write holding reg.	
3	00	Hi byte of requested register (40000 in this case)	
4	00	Lo byte of requested register (40000 in this case)	
5	00	Hi byte of requested number of registers.	
6	02	Lo byte of requested number of registers.	
7	CRCLo	CRC Lo byte	16 bit CRC, Data validation code
8	CRCHi	CRC Hi byte	

SERIAL INTERFACE PROTOCOL

Page 21
3. Command 04 (Read Input Register)

Command 04 works in similar way as command 03 except it reads input registers like counts $\mathrm{Co}, \mathrm{Cb}, \mathrm{Ct}$ which are the process parameters, instead of programmable parameters like in command 03. The query and response is exactly same as command 03 , except that the command field will have 04 instead of 03 and the data transaction will be related to input registers instead of holding registers. The process parameters like $\mathrm{Co}, \mathrm{Cb}, \mathrm{Ct}$ can not be edited.

Following is the Modbus Address Table for Input registers:-

Address	Description	Remarks
30000	Co Hi	MSB of the main counter
30001	Co Lo	LSB of the main counter
30002	Cb Hi	MSB of the Batch counter
30003	Cb Lo	LSB of the Batch counter
30004	Ct Hi	MSB of the Totalizer counter
30005	Ct Lo	LSB of the Totalizer counter

Following is the Modbus Address Table for Holding registers:-

Address	Description	Remarks
40000	Start Count Hi	MSB of the Start count .The start count value should not exceed 999999(F423Fh).If the value exceeds, the start count will be replaced by the default value 000000.
40001	Start Count Lo	LSB of the Start count. The start count value should not exceed 999999(F423Fh).If the value exceeds, the start count will be replaced by the default value 000000.
40002	Preset 1 Hi	MSB of the Numeric value of the Preset 1 value of 3 relays / Solid State Output. The preset 1 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 1 value will be replaced by the default value 000000.
40003	Preset 1 Lo	LSB of the Numeric value of the Preset 1 value of 3 relays / Solid State Output. The preset 1 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 1 value will be replaced by the default value 000000.
40004	Preset 2 Hi	MSB of the Numeric value of the Preset 2 value of 3 relays / Solid State Output. The preset 2 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 2 value will be replaced by the default value 000000.
40005	Preset 2 Lo	LSB of the Numeric value of the Preset 2 value of 3 relays / Solid State Output. The preset 2 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 2 value will be replaced by the default value 000000.
40006	Preset 3 Hi	MSB of the Numeric value of the Preset 3 value of 3 relays / Solid State Output. The preset 3 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 3 value will be replaced by the default value 000000.
40007	Preset 3 Lo	LSB of the Numeric value of the Preset 3 value of 3 relays / Solid State Output. The preset 3 value should not exceed 999999(F423Fh). If the value exceeds, the Preset 3 value will be replaced by the default value 000000 .

40008	Batch Preset Hi	MSB of the Numeric value of the Batch Preset assignment of 3 relays. The Batch preset assignment value should not exceed 99999(F423Fh). If the value exceeds the Batch Preset assignment will be replaced by the default value 000000.
40009	Batch Preset Lo	LSB of the Numeric value of the Batch Preset assignment of 3 relays. The Batch preset assignment value should not exceed 999999(F423Fh). If the value exceeds the Batch Preset assignment will be replaced by the default value 000000.
40010	Correction Cnst Hi	MSB of Numeric Constant for inputs A \& B. The Correction Cnst value should not exceed 999999(F423Fh). If the value exceeds, the Correction Cnst value will be replaced by the default value 100000.
40011	Correction Cnst Lo	LSB of Numeric Constant for inputs A \& B. The Correction Cnst value should not exceed 999999(F423Fh). If the value exceeds, the Correction Cnst value will be replaced by the default value 100000.
40012	Input Mode Hi	MSB of the Numeric value. Default value 0.
40013	Input Mode Lo	LSB of the Numeric value used to select the A-B, A+B X1 for open collector or contact inputs: selects A-B, A+B X2 or Quadrature X2, X4 for open collector inputs. The Input mode value should not exceed 7. If the value exceeds, it will be loaded with AMINUSB_CONTACT_X1.
40014	Counter Dir Hi	MSB of the Numeric value. Default value 0.
40015	Counter Dir Lo	LSB of the count direction. The value of the count direction is either 0(direction UP) or 1 (direction DWN). If the value given is greater then
4 then the default value of 0(direction UP) is loaded.		

40018	Batch Count Enable Hi	MSB of the Numeric value. Default value 0 .
40019	Batch Count Enable Lo	LSB of the Numeric value used to select the batch counter enable. The value can be either 0 (BATCHOFF) or 1(BATCH ON). If the value exceeds, the default value of 0 is loaded.
40020	Total Count Enable Hi	MSB of the Numeric value. Default value 0 .
40021	Total Count Enable Lo	LSB of the Numeric value used to select the Totalizer counter enable. The value can be either 0(TOTAL_OFF) or 1(TOTAL_ON). If the value exceeds, the default value of 0 is loaded.
40022	Frnt Panel Rst Hi	MSB of the Numeric value. Default value 0 .
40023	Frnt Panel Rst Lo	LSB of the Numeric value used to select the Front Panel reset. The value can be either 0(FRNT_PANL_RST_OFF) or 1 (FRNT_PANL_RST_ON). If the value exceeds, the default value of 0 is loaded.
40024	Preset Lock Hi	MSB of the Numeric value. Default value 0 .
40025	Preset Lock Lo	LSB of the Numeric value used to select the editable option of the set up mode parameters. The value can be either 0 (PRST_LOC_OFF) or 1(PRST_LOC_ON). If the value exceeds, the default value of 0 is loaded.
40026	Cntr Retention Hi	MSB of the Numeric value. Default value 0 .
40027	Cntr Retention Lo	LSB of the Numeric value used to select the Counter retention. The value can be either 0 (CNTR_RETN_OFF) or 1 (CNTR_RETN_ON). If the value exceeds, the default value of 0 is loaded.
40028	Reset Type Hi	MSB of the Numeric value. Default value 0 .
40029	Reset Type Lo	LSB of the Numeric value used to select the open collector or contact closure input types. The value can be either 0 (RESET_CC) or 1 (RESET_OC). If the value exceeds, the default value of 0 is loaded.
40030	Stop_Hold_Mode Hi	MSB of the Numeric value. Default value 0 .
40031	Stop_Hold_Mode Lo	LSBof the Numeric value used to select the Stop count or display Hold function via external input. The value can be either 0 (STOP_MODE) or 1(HOLD_MODE). If the value exceeds, the default value of 0 is loaded.
40032	Batch_Total_Rst Hi	MSB of the Numeric value. Default value 0 .

40033	Batch_Total_Rst Lo	LSB of the Numeric value used to select the batch reset or totalizer reset function via external input. The value can be either 0(BATCH_RST) or 1 (TOTALISER_RST). If the value exceeds, the default value of 0 is loaded.
40034	Out_1 Hi	MSB of the Numeric value. Default value 0 .
40035	Out_1 Lo	LSB of the Numeric value used to select the latched or pulsed operation of Output 1. The value should not exceed 9999(270Fh). If the value exceeds, the output 1 value will be replaced by the default value 0000 .
40036	Out_2 Hi	MSB of the Numeric value. Default value 0 .
40037	Out_2 Lo	LSB of the Numeric value used to select the latched or pulsed operation of Output 2 . The value should not exceed 9999(270Fh). If the value exceeds, the output 2 value will be replaced by the default value 0000.
40038	Out_3 Hi	MSB of the Numeric value. Default value 0 .
40039	Out_3 Lo	LSB of the Numeric value used to select the latched or pulsed operation of Output 3. The value should not exceed 9999(270Fh). If the value exceeds the output 3 value will be replaced by the default value 0000 .
40040	P1_Assign Hi	MSB of the Numeric value. Default value 0 .
40041	P1_Assign Lo	LSB of the Numeric value used to select assign output operation for preset 1 . In this Menu '-' refers to 1 ,'p' refers to 2 and 'd' refers to 3 . The first integer (LSB) refers to AUTO reset. Its value can be 1 or 2.1 refers to '-' and 2 refers to Auto reset. The second integer refers to Relay 1.The third integer refers to Relay 2.The last integer refers to relay 3. The relay can be either left ideal('-') or can be picked up('p') or can be dropped('d'). Refer preset assignment example mentioned in page-25
40042	P2_Assign Hi	MSB of the Numeric value. Default value 0 .
40043	P2_Assign Lo	LSB of the Numeric value used to select the assign output operation for preset 2. In this Menu '-' refers to 1 , ' p ' refers to 2 and ' d ' refers to 3. The first integer (lsb) refers to AUTO reset. Its value can be 1 or 2 . 1 refers to '-' and 2 refers to Auto reset. The second integer refers to Relay 1.The third integer refers to Relay 2.The last integer refers to relay 3 . The relay can be either left ideal('-' -) or can be picked up('p') or can be dropped('d'). Refer preset assignment example mentioned in page-25
40044	P3_Assign Hi	MSB of the Numeric value. Default value 0 .

40045	P3_Assign Lo	LSB of the Numeric value used to select the assign output operation for preset 3 . In this Menu '-' refers to 1 ,' p ' refers to 2 and ' d ' refers to 3. The first integer (lsb) refers to AUTO reset. Its value can be 1 or 2. 1 refers to '-' and 2 refers to Auto reset. The second integer refers to Relay 1.The third integer refers to Relay 2.The last integer refers to relay 3. The relay can be either left ideal($\left(-{ }^{-}\right)$or can be picked up(p ') or can be dropped('d'). Refer preset assignment example mentioned in page-25
40046	Batch_Preset_Assign Hi	MSB of the Numeric value. Default value 0 .
40047	Batch_Preset_Assign Lo	LSB of the Numeric value used to select the assign output operation for Batch preset. In this Menu '-' refers to 1 ,'p' refers to 2 and 'd' refers to 3 . The first integer (lsb) refers to AUTO reset. Its value can be 1 or 2.1 refers to '-' and 2 refers to Auto reset. The second integer refers to Relay 1.The third integer refers to Relay 2.The last integer refers to relay 3 . The relay can be either left ideal('-') or can be picked up('p') or can be dropped ('d').
40048	Rst_Input_Assign Hi	MSB of the Numeric value. Default value 0 .
40049	Rst_Input_Assign Lo	LSB of the Numeric value used to select the assign output operation for reset input. In this Menu '-' refers to 1 ,'p' refers to 2 and 'd' refers to 3 . The first integer refers to relay 1. The second integer refers to relay 2. The last integer refers to relay 3 . The relay can be either left ideal('-') or can be picked up('p') or can be dropped ('d').
40050	Out_Ctrl_Assign Hi	MSB of the Numeric value. Default value 0 .
40051	Out_Ctrl_Assign Lo	LSB of the Numeric value used to select the assign output operation for output Control input. In this Menu '-' refers to 1 ,'p' refers to 2 and 'd' refers to 3 . The first integer refers to relay 1.The second integer refers to relay 2.The last integer refers to relay 3. The relay can be either left ideal('-') or can be picked up('p') or can be dropped ('d').
40052	Baud_Select Hi	MSB of the Numeric value. Default value 0 .
40053	Baud _Select Lo	LSB of the Numeric value used to select the Baud rate for Serial communication. The value can not exceed 4 .If the value exceeds, the default value 0 is loaded which terminates the communication.
40054	Serial_ID Hi	MSB of the Numeric value. Default value 0 .
40055	Serial _ID Lo	LSB of the Numeric value used to program the serial ID (01-32). The value should not exceed 32 . If the value exceeds, the Serial ID will be replaced by 32 .

Preset assignmnet example:

If we want to set Autoreset and keep relay 1 ideal, drop relay 2 and pick up relay 3 then the value to be given is the 2312 it hex equivalent is 908 h . which should be loaded in to the 40041 . If any of the integer value exceeds, 3 then all the integers will be loaded with 1111 (457h).

WARRANTY

Standard products manufactured by the Company are warranted to be free from workmanship and material for a period of one year from the date of shipment, and products which are defective in workmanship or material will be repaired or replaced, at the option of the Company, at no charge to the buyer. Final determination as to whether a product is actually defective rests with the company. The obligation of the company hereunder shall be limited solely to repair and replacement of products that fall within the foregoing limitations, and shall be conditioned upon receipt by the company of written notice of any alleged defects or deficiency promptly after discovery within the warranty period, and in the case of components or units purchased by the company, the obligation of the company shall not exceed the settlement that the company is able to obtain from the supplier thereof. No products shall be returned to the company without its prior consent. Products which the company consents to have returned shall be shipped F.O.B. the Company's factory. The Company cannot assume responsibility or accept invoices for unauthorized repairs to its components, even though defective. The life of the products of the Company depends, to a large extent, upon the type of usage thereof, and THE COMPANY MAKES NO WARRANTY AS TO FITNESS OF ITS PRODUCTS FOR SPECIFIC APPLICATIONS BY THE BUYER NOR AS TO PERIOD OF SERVICE UNLESS THE COMPANY SPECIFICALLY AGREES OTHERWISE IN WRITING AFTER THE PROPOSED USAGE HAS BEEN MADE KNOWN TO IT.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.

SERVICE
If this product requires service, call Eagle Signal for an RMA (Return Material Authorization) number, pack it in a sturdy carton and ship prepaid to: Service Dept. at address below.

Include 1. Description of the problem
2. Name of the responsible person
3. Purchase order number
4. Return shipping instructions.

