MAXjr is a family of powerful tachometers. MAXjr features guided programming using English prompts for easy setup and operation. Human engineering, high performance, and advanced packaging make MAXjr the best value for rate, ratio, and time interval indicator applications.

MAXjr Family Features:
- Guided programming by English prompts
- Tactile response keyboard
- Large, bright LED display
- Sealed front panel, NEMA 4 rated
- Time interval measurement technique
- Automatic averaging for display stability
- Programmable calibration
- Display Hold and Output Disable control inputs
- Solid State or Contact Closure inputs
- Built-in diagnostics
- Extruded aluminum DIN enclosure

MAXjr Family Models:
MAXjr Tach 1 - Rate Indicator with Alarms
MAXjr Tach 2 - Rate, Ratio, Time Interval Indicator with Alarms

KEY SPECIFICATIONS:
- Five digit display
- Programmable display decimal point
- Dual Alarms, 1 High and 1 Low Alarm
- 0.01% accuracy
- Five digit calibration
- 1 sec or 1 input cycle update time
- 0.02 Hz to 10 kHz input rates
- +12 VDC accessory supply
- Two solid state Alarm outputs
- Following, Pulsed, or Latched Alarms
- 115 VAC operation (230 VAC available)

INDEX TO CONTENTS:
Overview ... p. 2,3
Specifications p. 4
Programming ... p. 5
MAXjr Tach Programming p. 6,7
Installation ... p. 8,9
Calibration and Applications p. 10,11
Ordering Information p. 12
ENGLISH PROMPTS
- Easy to read
- Easy to program

METAL ENCLOSURE
- Improves noise immunity
- Eliminates RFI emissions
- High strength aluminum

LARGE LED DISPLAY
- 5 decades
- 0.56" high
- High intensity
- High contrast
- Alpha and numeric

RUGGED PANEL STRAPS
- Won't vibrate loose

SEALED FRONT PANEL
- NEMA 4 rated
- Oil tight
- Water tight
- Chemical resistant
- Clean styling

EASY PROGRAMMING
- Tactile response keyboard
- Menu driven selections
- Automatic key repeat
- Human engineered

MAX Jr
OVERVIEW...

ACCESSORY SUPPLY
- +12 volts DC
- 125 milliamps

SOLID STATE OUTPUTS
- Output 1 is High Alarm
- Output 2 is Low Alarm
- Programmable to follow the Alarms, pulse, or latch

NEOPRENE GASKET
- Seals unit to panel

POWER INPUT
- 115 VAC
- 230 VAC for E version
- Memory is retained indefinitely during power outages

RATE INPUT SELECTIONS
- Contact closures
- Open collector devices
- Solid state transducers
- Magnetic pickups
- Logic output sources

CONTROL INPUTS
- Input 1 is Display Hold and is level sensitive
- Input 2 is Output Disable and is level sensitive
- Output Disable resets and disables Alarm outputs

PROGRAM DISABLE SWITCH
- Inhibits RUN/PROGRAM key
- Prevents unauthorized changing of programmed data

RATE INPUTS
- Signal A is used for Rate and Time Interval measurements
- Signals A and B are used for Ratio measurements and for Start/Stop time measurements
- Can be Solid State or Contact driven
SPECIFICATIONS

Input Power:
100 to 125 VAC, 50/60 Hz, 6VA (200 to 250 VAC for 'E' version)

Accessory Power:
12 VDC ± 25% @ 0 to 125 mA

Tachometer Operation:
- **Rate:** freq of A in Hz (cycles/sec)
- **Ratio:** freq of A / freq of B
- **Time:** period of A in seconds or interval from A (Start) to B (Stop) in seconds

Alarms:
(1) High Alarm, (1) Low Alarm

Calibrator Range:
0.0001 to 99999.

Input Frequency:
- **High Range:** 0.2 Hz to 10 kHz on A or B (solid state)
- **Low Range:** 0.02 Hz to 20 Hz on A and B (contacts)
- **0.7 to 50 sec for interval A to B:** (Start/Stop)

Accuracy:
- **Hi Range (solid state):** 0.01% initial (Rate/Time)
- **Lo Range (contacts):** 0.1% Drift/Drift Stability: 0.001%

Display Update:
< 1 sec typical or 1 input cycle

Controls:
- Input 1: Display Hold (level sensitive)
- Input 2: Output Disable (level sensitive)

Signal Inputs, A and B:

<table>
<thead>
<tr>
<th>Solid State (current sourcing):</th>
<th>1.7 min to 20 max VDC</th>
<th>0 min to 0.8 max VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High</td>
<td>Input Low</td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>3 kΩ min</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>0.6 ma min source</td>
<td></td>
</tr>
<tr>
<td>Input Response</td>
<td>50 µs min high and low time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Collector and Contact Closure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High</td>
</tr>
<tr>
<td>Input Low</td>
</tr>
<tr>
<td>Input Impedance</td>
</tr>
<tr>
<td>Input Current</td>
</tr>
<tr>
<td>Input Response</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High</td>
</tr>
<tr>
<td>Input Low</td>
</tr>
<tr>
<td>Input Impedance</td>
</tr>
<tr>
<td>Input Current</td>
</tr>
<tr>
<td>Input Response</td>
</tr>
</tbody>
</table>

Control Inputs:
- **Input High:** open or 1.7 min to 20 max VDC
- **Input Low:** 0 min to 0.8 max VDC
- **Input Impedance:** 1.2 kΩ min
- **Input Current:** 1.0 ma min sink
- **Input Response:** 25 ms min make and break time

Display:
- **Decades:** 5 decade, 0.56" red LED + 8 legend
- **Decimal Point:** Programmable from X.XXX to XXXXX

Keyboard:
Sealed, tactile response, 6 positions

Program Security:
Program Disable switch

Outputs:
- **Type:** 2 Open Collector
- **Sink Current:** 100 ma max
- **Collector Voltage:** 30 VDC max
- **Output Voltage:** 0.5 VDC typical @ 50 ma
- **Programming:** Both outputs may follow Alarms
- **Assignment:** Output 1 = Hi Alarm, Output 2 = Lo Alarm

Diagnostics:
- Signal and Control Inputs Test
- Solid State Outputs Test
- Front Panel Test
- Display Digits Test
- Display Segments Test

Mechanical:
- **Enclosure:** Extruded aluminum with molded Valox bezel
- **Cutout:** 1.98"H x 3.78"W x 6.03"D
- **Panel Thickness:** 1/16" to 1/4"
- **Depth Behind Bezel:** 5.68"
- **Weight:** 1.4 lbs

Environmental:
- **Operating Temp:** 0 to 50 °C. (32 to 122 °F.)
- **Storage Temp:** -18 to 85 °C. (0 to 186 °F.)
- **Ambient Humidity:** 0 to 90% and noncondensing

Error Codes:
1. Low AC line voltage
2. Combined input frequency above 10 kHz
3. Input frequency (A or B) above 10 kHz
4. NonVolatilie RAM failure
5. Overrange (Result is too large to display)
MODEL

MAXjr Tach 1
Rate Indicator with Alarms

MAXjr Tach 2
Rate, Ratio, Time Interval Indicator with Alarms

DESCRIPTION

PROGRAMMABLE FEATURES

- Input Calibration
- High and Low Alarms
- Decimal Point Position
- Solid State or contact closure inputs
- Output operation to follow Alarms, pulse once, or latch until reset

all of the above plus
- Measurement function is user selectable for Rate, Ratio, or Time Interval

PROGRAM INDICATOR
- Illuminated in Program Mode

ALARM INDICATORS
- Illuminated whenever Alarms are active

DOWN CURSOR
- Brings next line into the display
- Rolls around from last line to first

RIGHT CURSOR
- Highlights next digit in numeric data fields
- Selects alternate display in option fields

INCREMENT / ON
- Adds one to the value of the highlighted digit

DECREMENT / OFF
- Subtracts one from the value of the highlighted digit

RESET / CLEAR
- Clears numeric value in the Program Mode

RUN / PROGRAM
- Alternate action switch
- Switches unit between Run and Program Modes
- Disabled by rear panel Program Disable switch
- Turns outputs Off

MAX jr
<table>
<thead>
<tr>
<th>LINE</th>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RUN MODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESULT</td>
<td>Latest calculation
Rate = CAL x Frequency (A)
Ratio = CAL x Freq (A) / Freq (B)
Time = CAL x Period (A) or Interval from A to B</td>
</tr>
<tr>
<td></td>
<td>PROGRAM MODE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DECIMAL POINT</td>
<td>Select one-of-four positions or none for Result and Alarms</td>
</tr>
<tr>
<td>2</td>
<td>HIGH ALARM</td>
<td>Numeric value of High Alarm (active when Result ≥ High Alarm)
NOTE: Each alarm may have any value within the range of the instrument.
The Low Alarm may be greater than the High Alarm.
Disable alarm function by setting value to zero.</td>
</tr>
<tr>
<td>3</td>
<td>LOW ALARM</td>
<td>Numeric value of Low Alarm (active when Result ≤ Low Alarm)</td>
</tr>
<tr>
<td>4</td>
<td>CAL DEC POINT</td>
<td>Select one-of-four positions or none for Calibrator</td>
</tr>
<tr>
<td>5</td>
<td>CALIBRATOR</td>
<td>Numeric constant that converts measurement into engineering units</td>
</tr>
<tr>
<td>6</td>
<td>INPUTS A AND B</td>
<td>Select High range (0.2 Hz to 10 kHz); Low range (0.02 to 20 Hz) for contact (slow) inputs</td>
</tr>
<tr>
<td>7</td>
<td>OUTPUT MODE</td>
<td>Select Alarm output operation to Follow Alarms, Pulse once, or Latch</td>
</tr>
<tr>
<td>8</td>
<td>FUNCTION</td>
<td>Select measurement function as Rate (A), Ratio (A/B), or Time (A or A-to-B)
NOTE: This line does not appear in MAXjr Tach 1.</td>
</tr>
<tr>
<td></td>
<td>DIAGNOSTIC MODE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>INPUT TEST</td>
<td>Shows active signal and control inputs on the display
(Sig A = "A", Sig B = "b", In 1 = "1", and In 2 = "2")</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT TEST</td>
<td>Allows manual pickup of either output
Outputs are dropped out when RUN/PGM is pressed.</td>
</tr>
<tr>
<td>11</td>
<td>PANEL TEST</td>
<td>Shows active keys on the display
(INC/ON = "1", DEC/OFF = "d", RUN/PGM = "P", and RST/CLR = "C")</td>
</tr>
<tr>
<td>12</td>
<td>DIGIT TEST</td>
<td>Constant pattern on the display</td>
</tr>
<tr>
<td>13</td>
<td>SEGMENT TEST</td>
<td>Illuminates all legends and digit positions</td>
</tr>
</tbody>
</table>
IMPORTANT

The MAXjr Products have been improved.

Please read the other side of this sheet for the changes to the manual,

BEFORE YOU INSTALL THE UNIT

DYNAPAR CORP.
Changes to the SPECIFICATIONS

Input Power:
- **AC model**
 - Rear panel switch selectable
 - Vue range: 115V (65-130VAC)
 - 230V (190-260VAC)
- **DC model**
 - 10-26VDC @ 0.2A max.
 - (excluding accessory power)

Control Inputs, IN1 and IN2:
- **Input High**
 - +3.5 < Vin < +30 VDC.
- **Input Low**
 - 0 < Vin < +1.5 VDC.
- **Impedance**
 - > 3K ohm.
- **Input Response**
 - 25mS. min. make and break time.

Outputs:
- **Collector Voltage**
 - +28 VDC max.

Signal Inputs, A and B:

Solid State (current sourcing):
- **Switch Setting**
 - 1, 2, 3, 4 OFF
- **Input High**
 - +3.5 < Vin < +30 VDC.
- **Input Low**
 - 0 < Vin < +1.5 VDC.
- **Impedance**
 - > 3K ohm.
- **Input Response**
 - 50 uS min. high and low time

Open Collector and Contact Closure:
- **Switch Setting**
 - 1 or 3 ON
- **Input High**
 - +3.5 < Vin < +30 VDC
 - (internal pull-up to +5VDC.)
- **Input Low**
 - 0 < Vin < +1.5 VDC.
- **Impedance:**
 - > 3K ohm.
- **Input Current**
 - < 2mA (Vin = 0VDC).
- **Input Response**
 - 50 uS. min. high and low (OC)
 - 25 mS. min. make and break time (CC)

Magnetic:
- **Switch setting**
 - 2 or 4 ON
- **Input Voltage**
 - > 0.1 Vp-p; < 26 Vrms.
- **Impedance**
 - > 3K ohm.
- **Input Response**
 - 50 uS. min. high and low time
MAXjr Tach Programming...

RUN MODE

- **DISPLAY**
 - **12345**

PROGRAM MODE

FACTORY PROGRAMMING

- **PGM D.P.**
 - **0**
- **PGM HI A**
 - **00000**
 - Selects and highlights the digit to be changed
 - **INC**
 - Adds one to the highlighted digit
 - **CLIR**
 - Clears the value displayed
 - **DEC**
 - Subtracts one from highlighted digit

- **PGM LO A**
 - **00000**
 - (program numeric value as shown in Hi Alarm above)

- **PGM CAL D.P.**
 - **00000**
 - **0**
- **PGM CAL**
 - **10000**
 - (program numeric value as shown in Hi Alarm above)

- **PGM INP**
 - **A. H.**
 - **A. L.**

- **PGM OUT**
 - **FULL**
 - **PULSE**
 - **LATCH**

- **PGM MODE**
 - **RATE**
 - **RAT IO**
 - **L INN E**

DIAGNOSTIC MODE

- **PGM**
 - with no inputs active
 - **1 A B 1 2**
 - with all inputs active

- **PGM**
 - **0. 12**
 - **0. 12**
 - **0. 12**
 - **ON**
 - picks up highlighted output

- **PGM**
 - with no keys pressed
 - **P. 1 D P L**
 - with all keys pressed

- **PGM**
 - **12345**
 - correct display pattern

- **PGM CAL HI A INP MODE D.P. LO A OUT**
 - **0 0 0 0**
 - all segments illuminated
A. PANEL MOUNTING

Make a panel cutout as shown below. If the installation requires sealing, the adhesive gasket (supplied) may be applied to the (bezel side of the) panel. Next, slide the unit through the cutout. Insert the panel mounting straps into the slotted guides in the enclosure. Tap the 5/8" long hex washer head screws into the enclosure and then tighten securely using a 3/16" hex driver.

B. AC LINE CONNECTIONS

Connect AC power as shown below. Unit requires external fuse. Use slow response type: 1/8 Amp for 115 VAC, and 1/16 Amp for 230 VAC. Connect terminal #3 to building ground. Route the AC wiring away from the signal inputs.

C. DISPLAY HOLD INPUT

The display updating is stopped for as long as the switch closure is maintained.

D. OUTPUT DISABLE INPUT

Output Disable will reset the latched Alarm outputs and disable the outputs while active.
E. RATE INPUTS

NOTE: For Ratio applications, use high resolution transducers for best results.

CONTACT CLOSURES
Set switches as shown below. Program Inputs A and B for Lo Range operation.

OPEN COLLECTOR DEVICES
Set switches as shown below.

LOGIC OUTPUT DEVICES
Set switches as shown below.

7400 TTL, 5 Volt CMOS

MAGNETIC PICKUPS
Set switches as shown below.

UNIDIRECTIONAL TRANSUDCERS
Set switches as shown below.

START / STOP SWITCH INPUTS
Set switches as shown below. Program Inputs A and B for Lo Range operation.

F. SOLID STATE OUTPUTS
Connect loads to either or both of the open collector outputs. Output voltage is 0.5 VDC typ. @ 50 mA
NOTE: Inductive loads require external suppression.

G. PROGRAM DISABLE SWITCH
Set switch as shown below to prevent unauthorized programming changes. This function prevents the unit from entering the Program Mode.
APPLICATIONS...

RATE
Calibrator = Displayed Rate
Frequency of A (Hz)

\[\frac{\text{freq}(A)}{\text{time}} = \frac{\text{counts}}{\text{time}} \]

RATIO
Calibrator = Displayed Ratio
Freq (A)/Freq (B)

\[\frac{\text{ratio}}{\text{time (A)}} = \frac{\text{freq}(A)}{\text{freq}(B)} \]

TIME
Calibrator = Displayed Period
Period of A (sec)

\[\frac{\text{period}(A)}{\text{time}} = \frac{\text{counts}}{\text{time}} \]

Calibrator = Displayed Time
Interval from A to D

\[\text{interval} = \text{time} \]

MOTOR RPM
A pickup can be positioned as shown to detect the motor shaft keyway. It will then provide one output pulse for every revolution of the shaft. When the motor is running at 1800 rpm, the frequency of the pulses is

\[\text{Freq}(A) = \frac{1800 \text{ rev}}{\text{minute}} \times \frac{1 \text{ minute}}{60 \text{ seconds}} \times \frac{1 \text{ pulse}}{\text{rev}} = 30 \text{ Hz} \]

DECIMAL POINT: .0 (to read 1800.0 rpm)
CALIBRATOR = 1800.0 rpm displayed = 60.000
30 Hz input

INPUTS A AND B: Hi range

PRODUCTION RATE
Parts on the conveyor break the beam of light and cause one output pulse per object. If the conveyor moves 2666 parts every hour, the pulse rate is

\[\text{Freq}(A) = \frac{2666 \text{ parts}}{\text{hour}} \times \frac{1 \text{ hour}}{3600 \text{ sec}} \times \frac{1 \text{ pulse}}{\text{part}} = 0.7406 \text{ Hz} \]

DECIMAL POINT: none (to read whole parts/hour)
CALIBRATOR = 2666 parts/hr displayed = 3600.0
0.7406 Hz input

INPUTS A AND B: Lo range

LINE SPEED
A measuring wheel is in contact with the material which is moving at 100 feet per minute. The frequency of pulses is

\[\text{Freq}(A) = \frac{100 \text{ feet}}{\text{minute}} \times \frac{1 \text{ min}}{60 \text{ sec}} \times \frac{1 \text{ rev}}{\text{foot}} \times \frac{60 \text{ pulses}}{\text{rev}} = 100 \text{ Hz} \]

DECIMAL POINT: none (to read 100 fpm)
.0 (to read 100.0 fpm)
.00 (to read 100.00 fpm)
CALIBRATOR = 100 fpm displayed = 1.0000
100 Hz input

INPUTS A AND B: Hi range
APPLICATIONS...

RATIO (DRAW OR EXTENSION)

To determine the Calibrator value for a ratio application, the frequencies of the A and B inputs must be known. These can be calculated from the material speed, roll diameters, and encoder resolution. With a 6 inch diameter roll driving A and an 8 inch on B (with like Rotopulsers™), the ratio of Freq (A) to Freq (B) is 1.3333.

DECIMAL POINT: .000
CALIBRATOR = 1.000 (with no extension)
1.3333
= 0.7500
INPUTS A AND B: Hi range
FUNCTION: Ratio

PRODUCTION TIME

At a Rotopulsers™ speed of 1800 rpm and a corresponding conveyor speed of 60 feet per minute, the time in the oven becomes

\[
\frac{1 \text{ min}}{60 \text{ feet}} \times 120 \text{ feet} \times 2 \text{ minutes}
\]

Period (A) = \[
\frac{1 \text{ min}}{1800 \text{ rev}} \times 60 \text{ sec} \times \frac{1 \text{ rev}}{1 \text{ pulse}} = 0.03333 \text{ sec}
\]

DECIMAL POINT: .00 (to read hundredth minutes)
CALIBRATOR = 2.00 minutes displayed
0.03333 sec
= 60.00
INPUTS A AND B: Hi range
FUNCTION: Time

TIME INTERVAL

The length of pieces of material can be indicated by measuring the time it takes the piece to pass a fixed sensor at a constant speed. At a conveyor speed of 3 inches per second, a 48 inch piece would result in a Start/Stop time interval of

\[
\frac{1 \text{ sec}}{3 \text{ inches}} \times 48 \text{ inches} = 16 \text{ seconds}
\]

DECIMAL POINT: .000 (to read thousandth inches)
CALIBRATOR = 48.000 inches displayed
16 seconds
= 3.0000
INPUTS A AND B: Lo range
NOTE: INPUTS A AND B MUST BE SET FOR LO RANGE FOR START/STOP MEASUREMENT.
interval A to B must be ≥ 0.7 sec and ≤ 50 sec.
FUNCTION: Time
Panamount Accessories

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Current Req.</th>
<th>Pkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>16 VA Power Conditioner</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PM21</td>
<td>Dual Differential Receiver</td>
<td>25 ma</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>with Transducer Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM26</td>
<td>Dual high voltage optic-isolator to open collector converter (for AC tachometer inputs)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>PM31</td>
<td>SPDT Relay Module (rated 7.5 A @ 120 VAC)</td>
<td>30 ma</td>
<td>D</td>
</tr>
<tr>
<td>PM41</td>
<td>Relay/Accessory Supply</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>16D70-234</td>
<td>12" Snap-Trak™</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Transducers

<table>
<thead>
<tr>
<th>Description</th>
<th>Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>53Z Zero Speed Pickup</td>
<td>MT100-0 115 VAC MT100-E 230 VAC</td>
</tr>
<tr>
<td>40 Rotopulser™</td>
<td>MT80-0 115 VAC MT80-E 230 VAC</td>
</tr>
<tr>
<td>60 Rotopulser™</td>
<td>MT20-0 115 VAC MT20-E 230 VAC</td>
</tr>
<tr>
<td>76AZT Rotopulser™</td>
<td>MT210-0 115 VAC MT210-E 230 VAC</td>
</tr>
</tbody>
</table>

Warranty

Standard products manufactured by the Company are warranted to be free from defects in workmanship and material for a period of one year from the date of shipment, and products which are defective in workmanship or material will be repaired or replaced, at the option of the Company, at no charge to the Buyer. Final determination as to whether a product is actually defective rests with the Company. The obligation of the Company hereunder shall be limited solely to repair and replacement of products that fall within the foregoing limitations, and shall be conditioned upon receipt by the Company of written notice of any alleged defects or deficiency promptly after discovery within the warranty period, and in the case of components or units purchased by the Company, the obligation of the Company shall not exceed the settlement that the Company is able to obtain from the supplier thereof. No products shall be returned to the Company without prior consent. Products which the Company consents to have returned shall be shipped F.O.B. the Company's factory. The Company cannot assume responsibility or accept invoices for unauthorized repairs to its components, even though defective. The life of the products of the Company depends, to a large extent, upon the type of usage thereof, and THE COMPANY MAKES NO WARRANTY AS TO FITNESS OF ITS PRODUCTS FOR SPECIFIC APPLICATIONS BY THE BUYER NOR AS TO PERIOD OF SERVICE UNLESS THE COMPANY SPECIFICALLY AGREES OTHERWISE IN WRITING AFTER THE PROPOSED USAGE HAS BEEN MADE KNOWN TO IT.

The foregoing warranty is exclusive and in lieu of all other warranties expressed or implied, including, but not limited to any warranty of merchantability or of fitness for a particular purpose.

This warranty does not apply to experimental or developmental products.

Service: If this product requires service, call Dynapar for an RMA (Return Material Authorization) number, pack it in a sturdy carton and ship prepaid to: Service Dept. at address below.

Include:
- 1. Description of problem
- 2. Name of responsible person
- 3. Purchase order number
- 4. Return shipping instructions

Dynapar Corporation

2100 W. Broad St., P.O. Box 368, Elizabethtown, NC 28337
TEL: (847) 662-2666 FAX: (847) 662-6633

16D250-44 Printed in U.S.A.